Applications of Submodular Functions

ثبت نشده
چکیده

Submodular functions and related polyhedra play an increasing role in combinatorial optimization. The present survey-type paper is intended to provide a brief account of this theory along with several applications in graph theory and combinatorial optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

Submodular Point Processes with Applications to Machine learning

We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...

متن کامل

Submodular Point Processes with Applications to Machine Learning: Extended Version

We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...

متن کامل

Deep Submodular Functions

We start with an overview of a class of submodular functions called SCMMs (sums of concave composed with non-negative modular functions plus a final arbitrary modular). We then define a new class of submodular functions we call deep submodular functions or DSFs. We show that DSFs are a flexible parametric family of submodular functions that share many of the properties and advantages of deep ne...

متن کامل

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993